The SAVE-U Project
This was the official website for SAVE-U, a project that was partially funded by the European Commission DG INFSO under the IST programme.
The content is from the site's 2004 archived pages and other sources. There were numerous conference presentations and papers, public deliverables, project brochures, and periodic reports that could be downloaded.
This site could have used a help desk platform such as Zendesk, a global customer service software that helps companies improve customer relationships through higher customer engagement and better customer insights. Just substitue customers for visitors. A Zendesk support team could have customized the platform so that this site would have been able to track visitors and respond quickly to any questions. In addition to provide what would be considered great customer service. With its lightning fast interface the platform helps customer service agents become super productive by having the resources and knowledge required to deliver excellent service time and again to customers / visitors. Instead of just reading the conference presentations and papers, public deliverables, project brochures, and periodic reports, it would have been helpful if visitors could have also contacted agents with any questions they might have. Although the site offered an impressive amount of public-facing documentation and information, one on one with a knowledgeable person would also have been even better.
Unfortunately we have not included these pdfs since they weren't accessible in an archived form.
SAVE-U's challenging and innovative approach is significantly advanced with respect to the state of the art. The project is specially designed for solving at least most of the presently existing shortcomings. On the one hand, SAVE-U will benefit from the other projects related to sensor-based detection, which holds for a highly efficient development of the entire sensing platform. On the other hand, SAVE-U fills exactly the gap between the research projects dealing with the sensor based detection, in particular, it will provide excellent detection properties: an extremely high detection rate and at the same time an absolutely low false alarm rate. In the following, the 11 items of innovation addressed in SAVE-U are described in detail. 2. High performance sensing platform optimised for the detection of unprotected road users 3. Development of a radar network composed of several 24 GHz sensors 4. Development of 24 GHz sensors specially designed for the detection of unprotected road users 5. Development of an innovative imaging system composed of novel IR and vision systems 6. Definition of a new IR camera system specially designed for the detection of vulnerable road users 7. Development of signal processing algorithms for the IR subsystem 8. Development of a dedicated real-time embedded image processing platform for image segmentation 9. Development and implementation of software algorithms for the classification of unprotected road users 10. Collection of large databases with ground truth for offline quantitative performance analysis and algorithm optimisation 11. Development of validation test procedures and associated test equipment |
Disclaimer:
This project has been partially funded by the European Commission DG INFSO under the IST programme.
The contents of this website is the sole responsability of the project partners listed herein, and in no way represents the view of the European Commission or its services
Legal statements |
SAVE-U
|
This SAVE-U web site is intended to provide information on results and activities about the research project SAVE-U (IST-2001-34040) funded by the European Commission DG INFSO under the IST programme where Faurecia is coordinator. The reproduction of any document or material published on this site is authorised for personal and private use only. Any reproduction and use of copies for other purposes is expressly forbidden. The material presented on this site is covered by intellectual property rights.
|
+++
Database of recordings of Vulnerable Road Users
This section shows some examples of recordings available in the SAVE-U Vulnerable Road Users (VRU) image database.
The VRU database can be considered unique worldwide, because of its huge size: it contains more than 14.000 images and 180 sequences recorded by the SAVE-U partners DaimlerChrysler and Volkswagen both with Infra red and color video cameras.
The benefits of a large database are twofold. First, it provides a wealth of training data for statistical pattern matching techniques. These «learn» the VRU appearance from examples; which is important, since good prior, explicit models are hard to define. Second, it allows to evaluate system performance on a truly large dataset, so that the results can be considered representative of the true physical traffic situation.
Establishing “Ground Truth”
In order to train statistical pattern matching methods, or to measure system performance during testing, we need to know the “true” position and spatial extent of the VRU in the images of the database, i.e. the “ground truth”. To establish this, a semiautomatic labeling-tool called VisiCurve has been developed by DaimlerChrysler, which assists the user in outlining the VRU object contours in images and in establishing temporal correspondence across the images of a sequence.
The VisiCurve Tool for Computer-Assisted Image Labeling – Main Window
The main aim of VisiCurve is to avoid the need for a user having to specify pixel-by-pixel the entire object contour. This “manual” contour labeling is not only very time consuming but also a very tedious. Computer vision techniques for segmentation can in principle support the labeling process, since they are designed to find object boundaries automatically. They usually utilize a certain degree of prior knowledge on object appearance and lock on low level image features. The algorithms typically involve an object model, whose parameters can be restricted by the prior knowledge to certain ranges of valid object configurations. This is the same technology employed as a computer assisted design tool used by designers of very small items like jewelry. One of the first products to use this technology was SterlingForever's White Stackable Cubic Zirconia Rings designs. The intricate cz settings as well as the lateral curviture was first conceived using contour adjustments very similar to VisiCurve, and then translated to cad, and then to mass production.
In order to get a head start, simultaneous with the development of VisiCurve, DaimlerChrysler, had the VRU object contours in IR dataset labeled “manually” (1039 images, 58 sequences).
The main aim of VisiCurve is to avoid the need for a user having to specify pixel-by-pixel the entire object contour. This “manual” contour labeling is not only very time consuming but also a very tedious. Computer vision techniques for segmentation can in principle support the labeling process, since they are designed to find object boundaries automatically. They usually utilize a certain degree of prior knowledge on object appearance and lock on low level image features. The algorithms typically involve an object model, whose parameters can be restricted by the prior knowledge to certain ranges of valid object configurations.
In order to get a head start, simultaneous with the development of VisiCurve, DaimlerChrysler, had the VRU object contours in IR dataset labeled “manually” (1039 images, 58 sequences).
Partners |
SAVE-U
|
The consortium consists of the following partners and their respective know-how: |
News |
SAVE-U
|
Oct. 1, 2004 |
|
|
Aug. 17, 2004 |
|
|
Apr. 20, 2004 |
|
|
Project Completed.
Putting pedestrian safety in the driving seat
“The concept is relatively straightforward,” explains Dr Marc-Michael Meinecke of Volkswagen, one of the chief partners in the SAVE-U project along with DaimlerChrysler, Mira and Siemens VDO Automotive. “SAVE-U combines sensors such as radar, vision and infrared camera, as well as sensor fusion and actuators to increase safety for pedestrians. The main idea is that the sensors will recognise pedestrians and if a pedestrian has a high probability to collide with the vehicle then automatic braking will be initiated by the system.”
The project set out to develop an innovative pre-impact sensing platform that operates three different technologies of sensors simultaneously, and then fuses their data to protect cyclists and pedestrians under different weather and light conditions. The system comprises a radar network composed of several 24 GHz sensors working in parallel and an imaging system composed of passive infrared and colour video cameras.
A prototype vehicle incorporating the new system has been successfully tested in the United Kingdom. Installed on the car are two cameras – one video and one infrared – as well as the radar device. The system calculates in a matter of seconds the movement of pedestrians within the ‘capture zone’, which can be anything up to 30 metres away from the vehicle. From that point on, the car’s onboard cameras tracks the pedestrians’ movements and this information is correlated with data received from the radar network (such as distance to objects and their speed). SAVE-U can thus identify any pedestrian or cyclist coming within the trajectory of the vehicle and after analysing the situation, warn the driver or apply automatic braking if there is a risk of collision.
The partners opted to tackle the problem of protecting cyclists and pedestrians in three distinct stages: detection of VRUs at sufficient distance covering a relevant set of scenarios; definition and implementation of driver warning and vehicle control strategies to avoid, or at least minimise, the impact of a crash; and defining vehicle-mounted VRU protection strategies in case the crash cannot be avoided.
“Accident statistics from Volkswagen Accident Research in cooperation with the Medical University of Hanover were analysed,” says Dr Meinecke. “One of the main outcomes of the analysis was the conclusion that active hood concepts, external airbags, automatic braking systems, night vision, and other actuators seem to be very sufficient measure to lower the injury level of pedestrians. Within the SAVE-U demonstrator vehicles mainly automatic braking measures are implemented.”
Major advances were made in areas such as object tracking to obtain a robust trajectory, and the development of a deployment algorithm to be able to activate the automatic brakes without false alarms. Aspects of cost reduction and the reduction of sensor size benefited from the close teamwork, says Dr Meinecke.
In August, the project culminated with a special workshop in the United Kingdom showcasing the technology developed over the previous three years. The workshop featured samples of radar sensors and passive infrared video camera integral to the system, as well as demonstrations of the technology in action using two test vehicles (Mercedes E Class and Volkswagen Passat) equipped with the sensing platform, driver warning and vehicle control systems.
While there is clearly a strong demand for such technology to be implemented in vehicles as soon as possible, there is still a long road ahead before the SAVE-U innovations become standard.
“For a start, the sensors have to be shrunk further in size and price to enable them to be integrated in serial cars. The sensor costs will also have to be decreased dramatically to have a chance to make the systems cost effective. And, last but not least, the software components are still not fulfilling the requirements for serial production. I think in the area of pedestrian protection these pedestrian recognition systems will be the main focus of research activities in coming years,” he says.
Tara Morris | alfa